หน้าหลัก > เนื้อหาวิชาการ > คณิต ม.ต้น > ตรีโกณมิติ ม.3 สรุปเนื้อหาพร้อมโจทย์แบบจัดเต็ม จบในที่เดียว !
ตรีโกณมิติ ม.3

ใครกำลังหาสรุปเนื้อหา ตรีโกณมิติ ม.3 อยู่ ต้องรีบมารวมกันตรงนี้เลยยย วันนี้พี่เตรียมเนื้อหานี้มาให้น้อง ๆ ม.3
และน้อง ๆ ม.2 ที่อยากเตรียมตัวล่วงหน้าโดยเฉพาะเลยย เพราะพี่เชื่อว่าตรีโกณเป็นอีก 1 วิชาที่ยากและต้องเป็นไม้เบื่อ
ไม้เมาของหลายคนแน่นอนนน แต่ไม่ต้องกังวลไปน้าา เพราะพี่สรุปหัวข้อ สูตร พร้อมตัวอย่างโจทย์ตรีโกณมิติมาให้
หมดแล้ว ถ้าใครพร้อมแล้วเราก็ไปลุยกันเลย !

หากลองย้อนกลับไปในสมัยก่อน คนสนใจที่จะวัดความยาวของรูปสามเหลี่ยมชนิดต่าง ๆ จึงตั้งชื่อเล่นให้กับการวัด
ในลักษณะนี้ โดยกำหนดให้ชื่อนั้นมีที่มาจากคำว่า trigonon ที่แปลว่ารูปสามเหลี่ยม และ metron ที่แปลว่าการวัด รวมกันเป็นชื่อว่า trigonometry หรือ ตรีโกณมิติ นั่นเอง วันเวลาผ่านไปความรู้เรื่องตรีโกณมิติถูกใช้อย่างแพร่หลายและเป็นที่ต้องการอย่างมาก จนกลายที่ต้องเรียนในวิชาคณิตศาสตร์ไปแล้วนั่นเอง

รูปสามเหลี่ยมมุมฉาก

จากที่เราได้รู้ความหมายไปแล้ว เราก็พอจะรู้แล้วว่าในบทนี้ เราจะสนใจรูปสามเหลี่ยมเป็นหลัก โดยรูปที่เราสนใจศึกษามากที่สุดในบทนี้ คือ รูปสามเหลี่ยมมุมฉากนั่นเอง เดี๋ยวเราลองมาดูกันเลยยย

รูปสามเหลี่ยมมุมฉาก คือ รูปสามเหลี่ยมที่มีมุมทั้งหมด 3 มุมแต่มี 1 มุมเป็นมุมฉาก ถ้าเราให้รูปสามเหลี่ยมมุมฉาก ABC ที่มี C เป็นมุมฉาก เราจะเรียกแต่ละด้านดังต่อไปนี้

รูปสามเหลี่ยมมุมฉากและด้านที่เกี่ยวข้องกับมุม A ในตรีโกณมิติ ม.3

\overline{AB} คือ ด้านตรงข้ามมุมฉาก (hypotenuse)

\overline{BC} คือ ด้านตรงข้ามมุม A (the opposite side of angle A)

\overline{AC} คือ ด้านประชิดมุม A (the adjacent side of angle A)

ข้อสังเกต ชื่อด้านที่เราเรียกตามรูปข้างต้นจะพิจารณาที่มุม A เป็นหลัก แต่ถ้าเปลี่ยนมาพิจารณามุม B เราก็ยังมีชื่อเรียกของด้านเหล่านี้เหมือนกัน โดย \overline{AC} จะเป็นด้านตรงข้ามมุม B และ \overline{BC} จะเป็นด้านประชิดมุม B นั่นเอง

อัตราส่วนตรีโกณมิติ

รูปสามเหลี่ยมมีองค์ประกอบที่สำคัญ คือ ด้านแต่ละด้านของรูปสามเหลี่ยมและมุมทั้ง 3 มุม ซึ่งต่อไปเราจะมาดู
ความสัมพันธ์ของแต่ละองค์ประกอบกันเลย

รูปสามเหลี่ยมมุมฉาก ABC ซึ่งมี C เป็นมุมฉาก เมื่อเราพิจารณามุมมุมหนึ่งที่ไม่ใช่มุมฉาก เช่น มุม A แล้วจะได้ว่า

ไซน์ของมุม A, โคไซน์ของมุม A และแทนเจนต์ของมุม A เนี่ยแหละ เราจะเห็นว่ามันคือการเอาความยาวด้านแต่ละด้านมาเทียบกันเป็นคู่ ๆ เราเรียกมันว่าอัตราส่วนตรีโกณมิติ ซึ่งอัตราส่วนตรีโกณมิติเดียวกันของมุมมุมหนึ่งเป็นค่าคงตัวค่าหนึ่งเสมอ และเราจะนิยมเขียน   

\sin A แทน ไซน์ของมุม A และอ่านว่า ไซน์ A

\cos A แทน โคไซน์ของมุม A และอ่านว่า คอส A

\tan A แทน แทนเจนต์ของมุม A และอ่านว่า แทน A

ตัวอย่างที่ 1 จากรูปสามเหลี่ยมมุมฉากที่กำหนดให้ จงหาค่า \sin A, \cos A, \tan A, \sin B, \cos B, \tan B

แบบฝึกหัดรูปสามเหลี่ยมมุมฉากเรื่องตรีโกณ ม.3

จากรูปจะได้ว่า

sinA = \frac{12}{13}  

cosA = \frac{5}{13} 

tanA = \frac{12}{5} 

sinB = \frac{5}{13} 

cosB = \frac{12}{13} 

tanB = \frac{5}{12}

อัตราส่วนตรีโกณมิติของมุมที่มีขนาด 30 องศา, 45 องศา และ 60 องศา

จากหัวข้อก่อนหน้าเราได้รู้จักกับอัตราส่วนตรีโกณมิติไปแล้ว ซึ่งเรารู้ว่าอัตราส่วนตรีโกณมิติในมุมที่มีขนาดเท่ากัน
จะมีค่าเท่ากัน ซึ่งจริง ๆ แล้วขนาดของมุมในรูปสามเหลี่ยมมุมฉากนั้นมีหลายมุมมากเลยนะ แต่ในระดับชั้น ม.3 เราจะโฟกัสแค่มุมแหลมที่มีขนาด 30^{\circ} , 45^{\circ} , 60^{\circ}

อัตราส่วนตรีโกณมิติของมุม 30 45 60

 สมบัติ
สำหรับรูปสามเหลี่ยมมุมฉากใด ๆ อัตราส่วนตรีโกณมิติเดียวกันของมุมที่มีขนาดเท่ากัน จะมีค่าเท่ากัน

ถ้าน้อง ๆ ยังจำค่าของอัตราส่วนตรีโกณมิติต่าง ๆ ของมุม 30^{\circ}, 45^{\circ}, 60^{\circ} จากในตารางไม่ได้ พี่มีเทคนิควิธีจำค่าของอัตราส่วนตรีโกณมิติแบบเก๋ ๆ ของมุม 30^{\circ}, 45^{\circ}, 60^{\circ} มาฝากกัน ยกมือซ้ายขึ้นมา แล้วลองไปดูกันว่าเทคนิคนี้มีวิธียังไงกันบ้างงง

วิธีใช้เทคนิคมือ (ซ้าย)

เทคนิคการหาค่าตรีโกณมิติด้วยมือซ้าย

ขั้นตอนการหาค่าโดยใช้เทคนิคมือ (ซ้าย) 

  • เลือกมุมที่เราต้องการพิจารณา
  • พับนิ้วลง ตามมุมในรูป เช่น ต้องการพิจารณามุม  30^{\circ} ให้พับนิ้วชี้ลง
  • การหาค่าของอัตราส่วนตรีโกณมิติ จะหาได้จากการนับจำนวนนิ้วจากด้านซ้ายหรือด้านขวาที่แตกต่างกัน

ลองใช้เทคนิคมือซ้ายในการหาค่า เช่น

  • ต้องการหาค่า sin60^{\circ}
    ให้พับนิ้วนางลง เหลือ 3 นิ้วทางด้านซ้าย เลยได้ว่าค่าของ sin60^{\circ} มีค่าเท่ากับ \frac{\sqrt{3}}{2}
  • ต้องการหาค่า cos45^{\circ}
    ให้พับนิ้วกลางลง เหลือ 2 นิ้วทางด้านขวา เลยได้ว่าค่าของ cos45^{\circ}  มีค่าเท่ากับ \frac{\sqrt{2}}{2} นั่นคือ cos45^{\circ}=\frac{\sqrt{2}}{2}=\frac{\sqrt{2}}{\sqrt{2}\times \sqrt{2}}=\frac{1}{\sqrt{2}} จะเห็นว่าได้ค่าเท่ากับตารางด้านบนเลย
  • ต้องการหาค่า tan60^{\circ}
    ให้พับนิ้วนางลง มี 3 นิ้วทางด้านซ้าย และ 1 นิ้วทางด้านขวา เลยได้ว่าค่าของ tan60^{\circ}
    มีค่าเท่ากับ \frac{\sqrt{3}}{\sqrt{1}}=\sqrt{3}

ตัวอย่างที่ 2 จากรูปสามเหลี่ยมต่อไปนี้ จงหาขนาดของมุม x และมุม y

โจทย์การฝึกใช้เทคนิคมือซ้ายสำหรับหาค่าตรีโกณมิติ

แนวคิด เราจะมาพิจารณากันว่ารูปสามเหลี่ยมข้างต้นนี้ เป็นรูปสามเหลี่ยมมุมฉากหรือไม่ ถ้าเป็นรูปสามเหลี่ยมมุมฉากจะใช้อัตราส่วนตรีโกณมิติในการหาขนาดของมุมต่อไป

วิธีทำ

จากทฤษฎีบทพีทาโกรัส “กำลังสองของความยาวของด้านตรงข้ามมุมฉากเท่ากับผลบวกของกำลังสองของความยาวของด้านประกอบมุมฉาก”

จากรูปสามเหลี่ยม

ABC จะได้ว่า CB^{2}=AB^{2}+AC^{2}

แทนค่าได้ว่า 10^{2}=5^{2}+(5\sqrt{3})^{2}

100=25+75

100=100 ซึ่งเป็นจริง

ดังนั้น รูปสามเหลี่ยม ABC เป็นรูปสามเหลี่ยมมุมฉาก ที่มีมุม A เป็นมุมฉาก

จากมุม x

พิจารณา cosx =\frac{5}{10}=\frac{1}{2}

จาก cos60^{\circ}=\frac{1}{2}

ดังนั้น x=60^{\circ}

จากมุม y

พิจารณา tany=\frac{5}{5\sqrt{3}}=\frac{1}{\sqrt{3}}

จาก tan30^{\circ}=\frac{1}{\sqrt{3}}

ดังนั้น y=30^{\circ}

ตัวอย่างที่ 3 จากรูปสามเหลี่ยมมุมฉากต่อไปนี้ จงหาค่า x และ y

วิธีทำ จาก tan60^{\circ}=\sqrt{3} 

จากรูป จะได้ว่า \frac{10\sqrt{3}}{x}=\sqrt{3} 

 10\sqrt{3}=x\sqrt{3}  

x=10 

จากค่า sin60^{\circ}=\frac{\sqrt{3}}{2} 

จากรูปจะได้ว่า \frac{10\sqrt{3}}{y} =\frac{\sqrt{3}}{2} 

(10\sqrt{3})(2)=y\sqrt{3}  

 20\sqrt{3}=y\sqrt{3}  

y=20

ตัวอย่างที่ 4 จงหาผลลัพธ์ของ sin30^{\circ} + (cos45^{\circ})^{2}

วิธีทำ

จาก sin30^{\circ}=\frac{1}{2},cos45^{\circ}=\frac{\sqrt{2}}{2}

จะได้ว่า sin30^{\circ} + (cos45^{\circ})^{2} = \frac{1}{2}+\left (\frac{\sqrt{2}}{2}\right)^{2}=\frac{1}{2}+\frac{2}{4}=\frac{1}{2}+\frac{1}{2}=1

ดังนั้น sin30^{\circ} + (cos45^{\circ})^{2}  =1

โจทย์ปัญหาอัตราส่วนตรีโกณมิติ

ในการแก้ปัญหาที่ต้องใช้อัตราส่วนตรีโกณมิติ จำเป็นต้องทราบขนาดของมุมด้วยน้า และการแก้โจทย์ปัญหาในเรื่องนี้เราจะใช้มุมที่เกิดจากการมองด้วยสายตา ซึ่งมีคำที่ใช้ในการเรียกมุมที่ทำกับแนวเส้นระดับสายตา 2 แบบด้วยกัน คือ
มุมก้ม (angle of depression) และมุมเงย (angle of elevation)

เทคนิคมุมก้มและมุมเงยสำหรับทำโจทย์ตรีโกณมิติ

จากรูป จะเห็นได้ว่า

  • มุมก้ม เป็นมุมที่เกิดจากการมองวัตถุที่อยู่ต่ำกว่าแนวเส้นระดับสายตา
  • มุมเงย เป็นมุมที่เกิดจากการมองวัตถุที่อยู่สูงกว่าแนวเส้นระดับสายตา

เรามาดูตัวอย่างวิธีการใช้งาน โดยผ่านตัวอย่างนี้กัน

ตัวอย่างที่ 5 บันไดวางพาดกำแพงโดยทำมุม 30^{\circ} กับพื้น ถ้าปลายอีกด้านของบันไดอยู่ห่างจากฐานกำแพงอยู่
6\sqrt{3} เมตร แล้วบันไดยาวกี่เมตร

วิธีทำ

กำหนดให้ บันไดยาว x เมตร

จะได้ว่า cos30^{\circ}=\frac{6\sqrt{3}}{x}

จาก cos30^{\circ}=\frac{\sqrt{3}}{2}

จะได้ \frac{\sqrt{3}}{2}=\frac{6\sqrt{3}}{x}  

x\sqrt{3}=12\sqrt{3} 

x=12

ดังนั้น บันไดยาว 12   เมตร

ติวคณิตศาสตร์ ม.3 กับ SmartMathPro

สำหรับน้อง ๆ ม.3 ที่ต้องการเก็บเกรดวิชาคณิตศาสตร์ให้ปัง ๆ แต่เคยลองทบทวนเนื้อหาด้วยตัวเองแล้ว ยังเจอจุดที่ไม่เข้าใจและอยากให้มีคนช่วยไกด์

พี่ขอแนะนำตัวช่วยอย่าง คอร์สคณิต ม.3 สอนโดยพี่ปั้น SmartMathPro ให้เลยย โดยแพ็กนี้จะสอนเนื้อหาทุกบททั้งเทอม 1 และเทอม 2 สอนสนุก เข้าใจง่าย (ใครพื้นฐานไม่ดีก็เรียนได้สบายมากก > <) พร้อมพาตะลุยโจทย์และมีแบบฝึกหัดให้แบบจัดเต็ม ไต่ระดับตั้งแต่แนวซ้อมมือ ข้อสอบในโรงเรียน และข้อสอบแข่งขัน ถ้าใครสนใจดูรายละเอียดเพิ่มเติม คลิก 

เป็นยังไงกันบ้างงง กับเนื้อหาตรีโกณมิติ ม.3 หลายคนพออ่านจบแล้ว อาจจะรู้สึกว่าเนื้อหาเยอะ แล้วก็ยากด้วย แต่ถ้าลองค่อย ๆ ทำความเข้าใจ รวมถึงทบทวนเนื้อหาและฝึกทำโจทย์บ่อย ๆ พี่เชื่อว่าเนื้อหาตรีโกณมิติ ม.3 ก็จะไม่ยากเกินความสามารถของทุกคนแน่นอนน ซึ่งถ้าใครอยากได้โจทย์เอาไว้ซ้อมมือ พี่ก็มีแบบฝึกหัดตรีโกณมิติ ม.3 มาให้ทุกคนได้ลองทำด้วยน้าา ไปดาวน์โหลดกันได้เลยย

ข้อสอบคณิตพร้อมเฉลย

ดูคลิปติว คณิตศาสตร์ ม.3

ติดตามคลิปติวฟรีอื่น ๆ จากพี่ปั้น ได้ทาYouTube Channel : SmartMathPro

บทความ แนะนำ

บทความ แนะนำ

ความคล้าย ม.3
สรุป ความคล้าย ม.3 พร้อมแจกโจทย์ เฉลย และคลิปติวฟรี
สมการกำลังสองตัวแปรเดียว ม.3
สรุป สมการกำลังสองตัวแปรเดียว ม.3 พร้อมแจกสูตรและโจทย์ฟรี !
พาราโบลา (ฟังก์ชันกำลังสอง) ม.3
พาราโบลา (ฟังก์ชันกำลังสอง) ม.3 สรุปพร้อมกราฟ สูตร โจทย์ฟรี
สถิติ ม.3 (แผนภาพกล่อง)
สถิติ ม.3 (แผนภาพกล่อง) สรุปเนื้อหา พร้อมแจกโจทย์และเฉลยฟรี!
วงกลม ม.3
สรุป วงกลม ม.3 ทฤษฎีบทวงกลม พร้อมแจกแบบฝึกหัดฟรี !
ความน่าจะเป็น ม.3
สรุป ความน่าจะเป็น ม.3 พร้อมแจกโจทย์และเฉลยฟรี!!
สรุปเนื้อหาคณิตศาสตร์ ม.ต้น ม.1 ม.2 ม.3
คณิตศาสตร์ ม.ต้น (ม.1 ม.2 ม.3) หลักสูตรใหม่ สสวท. เรียนอะไรบ้าง?

ทีมวิชาการคณิตศาสตร์

ผู้อยู่เบื้องหลังการจัดทำคอร์สเรียนร่วมกับพี่ติวเตอร์
และผู้เขียนบทความวิชาการคณิตศาสตร์ของสถาบัน SmartMathPro

ทีมวิชาการคณิตศาสตร์

ผู้อยู่เบื้องหลังการจัดทำคอร์สเรียนร่วมกับพี่ติวเตอร์
และผู้เขียนบทความวิชาการคณิตศาสตร์ของสถาบัน SmartMathPro

สำหรับน้อง ๆ ที่สนใจสอบถามข้อมูลเพิ่มเติม รวมถึงติดตามข่าวสารต่าง ๆ ที่อัปเดตอย่างเรียลไทม์ ได้ที่

Line : @smartmathpronews

FB : Pan SmartMathPro ติวคณิต By พี่ปั้น 

IG : pan_smartmathpro

X : @PanSmartMathPro

Tiktok : @pan_smartmathpro

Lemon8 : @pan_smartmathpro

Share